search_query=cat:astro-ph.*+AND+lastUpdatedDate:[202512242000+TO+202512302000]&start=0&max_results=5000
Attenuation bias -- the systematic underestimation of regression coefficients due to measurement errors in input variables -- affects astronomical data-driven models. For linear regression, this problem was solved by treating the true input values as latent variables to be estimated alongside model parameters. In this paper, we show that neural networks suffer from the same attenuation bias and that the latent variable solution generalizes directly to neural networks. We introduce LatentNN, a method that jointly optimizes network parameters and latent input values by maximizing the joint likelihood of observing both inputs and outputs. We demonstrate the correction on one-dimensional regression, multivariate inputs with correlated features, and stellar spectroscopy applications. LatentNN reduces attenuation bias across a range of signal-to-noise ratios where standard neural networks show large bias. This provides a framework for improved neural network inference in the low signal-to-noise regime characteristic of astronomical data. This bias correction is most effective when measurement errors are less than roughly half the intrinsic data range; in the regime of very low signal-to-noise and few informative features. Code is available at https://github.com/tingyuansen/LatentNN.
Artificial Intelligence (AI) is transforming domains from healthcare and agriculture to finance and industry. As progress on Earth meets growing constraints, the next frontier is outer space, where AI can enable autonomous, resilient operations under extreme uncertainty and limited human oversight. This paper introduces Space AI as a unified interdisciplinary field at the intersection of artificial intelligence and space science and technology. We consolidate historical developments and contemporary progress, and propose a systematic framework that organises Space AI into four mission contexts: 1 AI on Earth, covering intelligent mission planning, spacecraft design optimisation, simulation, and ground-based data analytics; 2 AI in Orbit, focusing on satellite and station autonomy, space robotics, on-board/near-real-time data processing, communication optimisation, and orbital safety; (3) AI in Deep Space, enabling autonomous navigation, adaptive scientific discovery, resource mapping, and long-duration human-AI collaboration under communication constraints; and 4 AI for Multi-Planetary Life, supporting in-situ resource utilisation, habitat and infrastructure construction, life-support and ecological management, and resilient interplanetary networks. Ultimately, Space AI can accelerate humanity's capability to explore and operate in space, while translating advances in sensing, robotics, optimisation, and trustworthy AI into broad societal impact on Earth.