search_query=cat:astro-ph.*+AND+lastUpdatedDate:[202511132000+TO+202511192000]&start=0&max_results=5000
The dynamic range of imaging detectors flown on-board X-ray observatories often only covers a limited flux range of extrasolar X-ray sources. The analysis of bright X-ray sources is complicated by so-called pile-up, which results from high incident photon flux. This nonlinear effect distorts the measured spectrum, resulting in biases in the inferred physical parameters, and can even lead to a complete signal loss in extreme cases. Piled-up data are commonly discarded due to resulting intractability of the likelihood. As a result, a large number of archival observations remain underexplored. We present a machine learning solution to this problem, using a simulation-based inference framework that allows us to estimate posterior distributions of physical source parameters from piled-up eROSITA data. We show that a normalizing flow produces better-constrained posterior densities than traditional mitigation techniques, as more data can be leveraged. We consider model- and calibration-dependent uncertainties and the applicability of such an algorithm to real data in the eROSITA archive.
Systematics contaminate observables, leading to distribution shifts relative to theoretically simulated signals-posing a major challenge for using pre-trained models to label such observables. Since systematics are often poorly understood and difficult to model, removing them directly and entirely may not be feasible. To address this challenge, we propose a novel method that aligns learned features between in-distribution (ID) and out-of-distribution (OOD) samples by optimizing a feature-alignment loss on the representations extracted from a pre-trained ID model. We first experimentally validate the method on the MNIST dataset using possible alignment losses, including mean squared error and optimal transport, and subsequently apply it to large-scale maps of neutral hydrogen. Our results show that optimal transport is particularly effective at aligning OOD features when parity between ID and OOD samples is unknown, even with limited data-mimicking real-world conditions in extracting information from large-scale surveys. Our code is available at https://github.com/sultan-hassan/feature-alignment-for-OOD-generalization.
The use of machine learning to represent subgrid-scale (SGS) dynamics is now well established in weather forecasting and climate modelling. Recent advances have demonstrated that SGS models trained via ``online'' end-to-end learning -- where the dynamical solver operating on the filtered equations participates in the training -- can outperform traditional physics-based approaches. Most studies, however, have focused on idealised periodic domains, neglecting the mechanical boundaries present e.g. in planetary interiors. To address this issue, we consider two-dimensional quasi-geostrophic turbulent flow in an axisymmetric bounded domain that we model using a pseudo-spectral differentiable solver, thereby enabling online learning. We examine three configurations, varying the geometry (between an exponential container and a spherical shell) and the rotation rate. Flow is driven by a prescribed analytical forcing, allowing for precise control over the energy injection scale and an exact estimate of the power input. We evaluate the accuracy of the online-trained SGS model against the reference direct numerical simulation using integral quantities and spectral diagnostics. In all configurations, we show that an SGS model trained on data spanning only one turnover time remains stable and accurate over integrations at least a hundred times longer than the training period. Moreover, we demonstrate the model's remarkable ability to reproduce slow processes occurring on time scales far exceeding the training duration, such as the inward drift of jets in the spherical shell. These results suggest a promising path towards developing SGS models for planetary and stellar interior dynamics, including dynamo processes.
China Jinping Underground Laboratory (CJPL), the deepest and largest underground laboratory worldwide, provides a low radiation background environment, which is necessary to frontier scientific research, such as the experimental studies of rare-event physics. Due to the almost filled space of CJPL-I and the requirement of future physics experiments, the construction of the second phase of CJPL (CJPL-II) was started in 2020 and all finished in 2024. In this work, we report the measured results of major environmental radiation in CJPL-II, including cosmic-ray muons, radon, gamma rays, and neutrons. Results indicate that the rock overburden and the radioactive background control effectively minimize the environmental radiation background. The scientific data presented also serve as an important basis to detector background modeling for the physics experiments in CJPL-II.
Upgrades to current gravitational wave detectors for the next observation run and upcoming third-generation observatories, like the Einstein telescope, are expected to have enormous improvements in detection sensitivities and compact object merger event rates. Estimation of source parameters for a wider parameter space that these detectable signals will lie in, will be a computational challenge. Thus, it is imperative to have methods to speed-up the likelihood calculations with theoretical waveform predictions, which can ultimately make the parameter estimation faster and aid in rapid multi-messenger follow-ups. Towards this end, we present a conditional variational auto-encoder model, based on the best performing architecture of Liao+2021, for faster generation of aligned-spin SEOBNRv4 inspiral-merger-ringdown waveforms. Our parameter space consists of four parameters, [$m_1$, $m_2$, $χ_1(z)$, $χ_2(z)$]. The masses are uniformly sampled in $[5,75]\,M_{\odot}$ with a mass ratio limit at $10\,M_{\odot}$, while the spins are uniform in $[-0.99,0.99]$. We train the model using $\sim10^5$ input waveforms data with a 70\%/10\% train/validation split, while 20\% data are reserved for testing. The median mismatch for the generated waveforms in the test dataset is $\sim10^{-2}$, with better performance in a restricted parameter space of $χ_{\rm eff}\in[-0.80,0.80]$. Our model is able to generate 100 waveforms in 0.1 second at an average speed of about 4.46 ms per waveform. This is 2-3 orders of magnitude faster than the native SEOBNRv4 implementation in lalsimulation. The latent sampling uncertainty of our model can be quantified with a mean mismatch deviation of $2\times10^{-1}$ for 1000 generations of the same waveform. Our work aims to be the first step towards developing a production-ready machine learning framework for the faster generation of gravitational waveform approximations.
In this work, we estimate the intrinsic dimension (iD) of the Radio Galaxy Zoo (RGZ) dataset using a score-based diffusion model. We examine how the iD estimates vary as a function of Bayesian neural network (BNN) energy scores, which measure how similar the radio sources are to the MiraBest subset of the RGZ dataset. We find that out-of-distribution sources exhibit higher iD values, and that the overall iD for RGZ exceeds those typically reported for natural image datasets. Furthermore, we analyse how iD varies across Fanaroff-Riley (FR) morphological classes and as a function of the signal-to-noise ratio (SNR). While no relationship is found between FR I and FR II classes, a weak trend toward higher SNR at lower iD. Future work using the RGZ dataset could make use of the relationship between iD and energy scores to quantitatively study and improve the representations learned by various self-supervised learning algorithms.
Coronal holes (CHs) are low-activity, low-density solar coronal regions with open magnetic field lines (Cranmer 2009). In the extreme ultraviolet (EUV) spectrum, CHs appear as dark patches. Using daily hand-drawn maps from the Space Weather Prediction Center (SWPC), we developed a semi-automated pipeline to digitize the SWPC maps into binary segmentation masks. The resulting masks constitute the CHASM-SWPC dataset, a high-quality dataset to train and test automated CH detection models, which is released with this paper. We developed CHASM (Coronal Hole Annotation using Semi-automatic Methods), a software tool for semi-automatic annotation that enables users to rapidly and accurately annotate SWPC maps. The CHASM tool enabled us to annotate 1,111 CH masks, comprising the CHASM-SWPC-1111 dataset. We then trained multiple CHRONNOS (Coronal Hole RecOgnition Neural Network Over multi-Spectral-data) architecture (Jarolim et al. 2021) neural networks using the CHASM-SWPC dataset and compared their performance. Training the CHRONNOS neural network on these data achieved an accuracy of 0.9805, a True Skill Statistic (TSS) of 0.6807, and an intersection-over-union (IoU) of 0.5668, which is higher than the original pretrained CHRONNOS model Jarolim et al. (2021) achieved an accuracy of 0.9708, a TSS of 0.6749, and an IoU of 0.4805, when evaluated on the CHASM-SWPC-1111 test set.